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Ambroxol Effects in Glucocerebrosidase
and a-Synuclein Transgenic Mice

Anna Migdalska-Richards, PhD,1 Liam Daly, MSci,1 Erwan Bezard, PhD,2,3 and
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Objective: Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the
lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer
an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients
carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glu-
cocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase
activity and on a-synuclein and phosphorylated a-synuclein protein levels in mice.
Methods: Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was mea-
sured in the mouse brain lysates. The brain lysates were also analyzed for a-synuclein and phosphorylated a-synuclein
protein levels.
Results: Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild-type mice, (2) transgenic
mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice
overexpressing human a-synuclein. Furthermore, in the mice overexpressing human a-synuclein, ambroxol treatment
decreased both a-synuclein and phosphorylated a-synuclein protein levels.
Interpretation: Our work supports the proposition that ambroxol should be further investigated as a potential novel
disease-modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebro-
sidase activity and decrease a-synuclein and phosphorylated a-synuclein protein levels.
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Homozygous mutations in the glucocerebrosidase

1 (GBA1) gene have long been known to cause

Gaucher disease (GD), the most common lysosomal stor-

age disorder. More recently, it has been observed that

both GD patients and carriers have an increased risk of

developing Parkinson disease (PD). Both homozygous

and heterozygous GBA1 mutations cause a reduction of

glucocerebrosidase (GCase) activity and confer a 20- to

30-fold increased risk for PD.1–4 It is estimated that

approximately 10 to 25% of PD patients have a GBA1

mutation (PD-GBA1), with the most common mutations

being L444P and N370S, and the highest frequency in

Ashkenazi patients.1–4

The clinical presentation of PD-GBA1 is very similar

to idiopathic PD, except for a slightly younger age of onset

and a tendency to more cognitive impairment. Importantly,

the pathology of PD-GBA1 is identical to idiopathic PD,

with nigral dopamine cell loss, Lewy bodies, and neurites

containing a-synuclein, so although the exact mechanism by

which GBA1 mutations increase the risk for PD is still

unknown, it is likely that as in idiopathic PD, accumulation

of a-synuclein, especially a-synuclein phosphorylated at ser-

ine 129 (S129), plays an important role in the development

and progression of PD-GBA1.5,6

Several studies have highlighted the reciprocal rela-

tionship between GCase activity and a-synuclein. It has

been shown in SH-SY5Y cell cultures, neuronal cultures,

conduritol-b-epoxide (CbE)-treated mice, and transgenic

Gba1 mouse models that reduced GCase activity results in

increased a-synuclein levels.7–14 Conversely, it has been

demonstrated in cell models that increased a-synuclein

causes a decrease in GCase activity.15 Moreover, the
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biochemical analysis of GBA1 wild-type Parkinson patients

showed that GCase activity and protein levels were signifi-

cantly reduced in several brain regions,15,16 further stress-

ing the importance of GCase in PD development.

The increasing evidence linking GCase with

a-synuclein in both PD-GBA1 and idiopathic PD patients

suggests that treatments capable of increasing GCase might

be beneficial to PD patients both with and without GBA1

mutations. To this end, small molecular chaperones

designed to cross the blood–brain barrier that are capable

of increasing GCase activity are being investigated as a nov-

el therapy for PD to decrease a-synuclein levels.17–25

One such small molecular chaperone is ambroxol

hydrochloride (ambroxol). Ambroxol was identified as a

GCase chaperone after screening the library of US Food and

Drug Administration–approved drugs with a thermal dena-

turation assay using wild-type GCase.19 To date, 2 ambroxol

studies using wild-type mice or transgenic mice carrying a

human transgene containing either N370S or L444P muta-

tion failed to provide convincing evidence to determine

whether ambroxol is capable of increasing GCase in the

peripheral and neuronal tissues.23,24 Considering the poten-

tial importance of ambroxol as a novel treatment for PD and

neuronopathic forms of GD, we have investigated the effect

of ambroxol on wild-type mice, on mice expressing the

L444P mutation in the murine Gba1 gene, and on mice

overexpressing human a-synuclein in the absence of mouse

a-synuclein.

Materials and Methods

Materials
4-Methylumbelliferyl b-D-glucopyranoside, 4-methylumbelli-

feryl N-acetyl-b-D-glucosaminide, sodium taurocholate hydrate,

and ambroxol hydrochloride were purchased from Sigma-

Aldrich (St Louis, MO). Pierce BCA Protein Assay, Halt Prote-

ase Inhibitor Cocktail, Halt Phosphatase Inhibitor, Pierce ECL

Western Blotting Substrate, and Power SYBR Green PCR Mas-

ter Mix were purchased from Thermo Scientific (Waltham,

MA). Luminata Forte Western HPR Substrate was purchased

from Millipore (Billerica, MA). RNeasy Mini Kit was pur-

chased from Qiagen (Hilden, Germany). Precision nanoScript 2

Reverse Transcription kit (RT-nano-Script2) was purchased

from Primerdesign (Chandler’s Ford, UK). Anti–a-synuclein anti-

body (4D6; ab1903), anti–a-synuclein (phospho S129) antibody

(EP1536Y; ab51253), anti–mitochondrial transcription factor

A (TFAM) antibody (ab131607), and anti–transcription factor

EB (TFEB) antibody - ChIP grade (ab2636) were purchased

from Abcam Biochemicals (Cambridge, UK). Polyclonal swine

antirabbit immunoglobulins/horseradish peroxidase (HRP), poly-

clonal goat antimouse immunoglobulins/HRP, and polyclonal

rabbit antigoat immunoglobulins/HRP were purchased from

Dako (Glostrup, Denmark).

Mice
Mice were treated in accordance with local ethical committee

guidelines and the UK Animals (Scientific Procedures) Act of

1986. All procedures were carried out in accordance with

Home Office guidelines (United Kingdom). B6129SF1/J

(101043) mice expressing wild-type Gba1 (wild-type mice) and

FVB;129S6-Sncatm1Nbm Tg(SNCA)1Nbm/J (010710) mice

overexpressing human a-synuclein in the absence of endogenous

mouse a-synuclein (SNCA/SNCA mice) were purchased from

Jackson Laboratory (Bar Harbor, ME). B6;129S4-Gbatm1Rlp/

Mmnc (000117-UNC) mice expressing heterozygous knockin

L444P mutation in the murine Gba1 gene (L444P/ 1 mice)

were purchased from the Mutant Mouse Regional Resource

Center.26 Transgenic mice containing heterozygous L444P

mutation were identified by polymerase chain reaction (PCR)

of ear genomic DNA using forward primer 50-TGTGAAGTTC

CTGGATGCCTATG-30 and reverse primer 50-TGGTGATG

TCTACAATGATGGGAC-30. Only male mice were used. All

mice were 10 to 12 weeks of age at the start of treatments.

Ambroxol Administration
Ambroxol was dissolved in distilled water by vigorous shaking.

Ambroxol solution was given to mice instead of normal drink-

ing water, and mice had access to it 24 hours per day.

Ambroxol solution was changed daily. To establish the opti-

mum concentration of ambroxol, wild-type mice were split into

5 groups (5–6 mice per group) and given ambroxol at concen-

trations of 1, 3, 4, and 5mM respectively for 12 consecutive

days. Untreated control mice were given distilled water that was

changed daily for 12 consecutive days. At the end of treatment,

4 different regions of the brain (brainstem, midbrain, cortex,

and striatum) were collected. After the optimal concentration of

ambroxol was established (as explained in Results), L444P/

1 and SNCA/SNCA mice were evaluated.

Enzyme Assays
Brain samples were homogenized in 5mM ethylenediaminete-

traacetic acid, 750mM sodium chloride, 50mM Tris (pH 7.4),

10% Triton X-100, unless stated otherwise. Homogenate was

centrifuged to remove insoluble materials, and protein concen-

tration was determined using a Pierce BCA Protein Assay.

Resulting lysate was diluted to 2mg/ml in distilled water and

sonicated.

GCase activity was measured in lysate (20 lg protein) using

5mM 4-methylumbelliferyl b-D-glucopyranoside substrate in

McIlvaine buffer (pH 5.4) supplemented with 22mM sodium

taurocholate hydrate at 37 8C for 1 hour. The reaction was

stopped by adding 0.25M glycine (pH 10.4), and substrate

fluorescence was measured at excitation of 365nm, emission of

450nm with a PerkinElmer (Waltham, MA) fluorescence spec-

trometer.27 All GCase assays were performed in duplicate. GCase

activity was expressed as nanomoles of substrate released per milli-

gram protein per hour.

b-Hexosaminidase (HEXB) was measured in lysate (2 lg pro-

tein) using 2mM 4-methylumbelliferyl N-acetyl-b-D-glucosaminide

substrate in McIlvaine buffer (pH 4.2) at 37 8C for 30 minutes. The
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reaction was stopped by adding 0.25M glycine (pH 10.4), and sub-

strate fluorescence was measured as above.28 All HEXB assays were

performed in triplicate. HEXB activity was expressed as nanomoles

of substrate released per milligram protein per minute.

Total, Cytosolic, and Lysosomal Fractions
A subset of brain samples were used to obtain the total, cytosol-

ic, and lysosomal fraction. These brain samples were homoge-

nized in a lysis buffer containing 250mM sucrose, 10mM Tris

(pH 7.4), and 1mM ethylenediaminetetraacetic acid (10 ll of

buffer per 1mg of brain sample). About 20% of homogenate

(total fraction) was collected into a separate tube. The remain-

ing homogenate was centrifuged at 1,500 relative centrifugation

force (rcf ) for 10 minutes. The supernatant was collected into a

fresh tube. The remaining pellet was further homogenized in

the lysis buffer (80% of initial buffer’s volume) and centrifuged

at 1,500rcf for 10 minutes, and the supernatant was collected

and combined with the previously collected supernatant. Com-

bined supernatants were centrifuged at 1,500rcf for 10 minutes

before the subsequent supernatant was collected into a fresh

tube and centrifuged again at 17,000rcf for 20 minutes. The

resulting supernatant corresponded to the cytosolic fraction.

The remaining pellet was washed and then resuspended in the

lysis buffer (20% of initial buffer’s volume). The resulting lysate

corresponded to the lysosomal fraction. GCase and HEXB

activity of the total, cytosolic, and lysosomal fraction were

measured as above.

Western Blotting
Brain samples were homogenized in 10mM Tris (pH 7.4.),

0.1% sodium dodecyl sulfate, 1 3 Halt Protease Inhibitor

Cocktail, and 1 3 Halt Phosphatase Inhibitor Cocktail.

Homogenate was centrifuged to remove insoluble materials,

and protein concentration was determined using a Pierce BCA

Protein Assay. Supernatant (30 lg protein) was separated on

12% NuPAGE Tris-Bis gels, transferred to Hybond-P mem-

brane, and probed with primary and respective secondary anti-

bodies. Bands were detected by Pierce ECL Western Blotting

Substrate or Luminata Forte Western HRP Substrate (Milli-

pore), and band intensity was measured using the ChemiDoc

MP System (Bio-Rad, Hercules, CA). Protein expression was

expressed as a ratio against b-actin.

Quantitative Real-Time PCR
RNA was extracted from mouse brains using RNeasy kit. RNA

was converted to cDNA using RT-nano-Script2, and relative

mRNA levels were measured using Power SYBR Green PCR

Master Mix. Relative expression of a-synuclein and GCase

mRNA was measured with Power SYBR Green PCR Master

Mix using a STEP One PCR machine (Applied Biosystems,

Foster City, CA). b-actin mRNA levels were used to normalise

data. Primers are listed in Table 1. Relative expression was cal-

culated using the DCT method.

Statistical Analysis
Data are expressed as mean 6 standard error of the mean, and sta-

tistical significance between groups was analyzed with the

unpaired t test or 1-way analysis of variance (ANOVA), followed

by the Tukey Honestly Significant Difference (HSD) test.

Results

Establishing the Optimum Concentration of
Ambroxol in Wild-Type Mice
GCase activity was measured in the brainstem, midbrain,

cortex, and striatum of wild-type mice given 0, 1, 3, 4,

or 5mM ambroxol for 12 consecutive days. The 1-way

ANOVA analysis showed a statistically significant differ-

ence in GCase activity between groups in the brainstem

(F4,22 5 5.115, p 5 0.0046), midbrain (F4,21 5 5.373,

p 5 0.0039), cortex (F4,22 5 5.849, p 5 0.0023), and stri-

atum (F4,20 5 7.711, p 5 0.0006). The post hoc analysis

using the Tukey HSD test determined that GCase activi-

ty was significantly increased in the brainstem (19%),

midbrain (16%), cortex (18%), and striatum (22%) of

mice treated with 4mM ambroxol (but not of mice

treated with 1, 3, and 5mM ambroxol), when compared

to untreated mice (Fig 1). The significant increase in

GCase activity in mice treated with 4mM ambroxol was

also observed in the cortex and striatum (when compared

to mice treated with 1, 3, and 5mM ambroxol), in the

brainstem (when compared to mice treated with 3 and

5mM ambroxol), and in the midbrain (when compared

to mice treated with 5mM ambroxol; see Fig 1). The

TABLE 1. Primers for Quantitative Real-Time Polymerase Chain Reaction

Target Sequence Annealing

Temperature, 8C

Mouse b-actin 50-TACAGCTTCACCACCACAGC-30,

50-AAGGAAGGCTGGAAAAGAGGC-30
58

Mouse GCase 50-GACCAACGCTTGCTGCTAC-30,

50-ACAGCAATGCCATGAACGTA-30
58

GCase 5 glucocerebrosidase.
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increase in GCase activity had no apparent effect on

HEXB activity, another lysosomal enzyme in mice treated

with 1 to 4mM ambroxol, but there was a significant

decrease in HEXB activity observed in the brainstem

(19%, p 5 0.0035) and midbrain (13%, p 5 0.0109) of

mice treated with 5mM ambroxol (data not shown). Tak-

ing into consideration the above data, a 4mM concentra-

tion of ambroxol was chosen as the optimal dose, and

was used in all subsequent experiments.

Ambroxol Treatment Did Not Change GCase
mRNA Levels in Wild-Type Mice
The quantitative real-time PCR was conducted in the

brainstem, midbrain, cortex, and striatum of ambroxol-

treated and untreated wild-type mice to determine

whether the significant increase in GCase activity was a

consequence of increased GCase mRNA levels. No

significant changes in GCase mRNA levels were

observed (Table 2).

FIGURE 1: Glucocerebrosidase enzyme (GCase) activity in wild-type mouse brains after 12 days of treatment with 1, 3, 4, or 5mM
ambroxol. GCase activity was significantly increased in the brainstem, midbrain, cortex, and striatum of mice treated with 4mM
ambroxol (n 5 5), when compared to untreated controls (n 5 6). Data were analyzed with the 1-way analysis of variance test,
followed by the post hoc analysis using the Tukey Honestly Significant Difference test. *p < 0.05, **p £ 0.01, ***p £ 0.001.

TABLE 2. GCase mRNA levels, and TFAM and TFEB Protein Levels in Wild-Type Mice Treated with 4mM

Ambroxol

Measure Brainstem Midbrain Cortex Striatum

GCase mRNA levels " 3%, p 5 0.44 " 15%, p 5 0.07 " 9%, p 5 0.59 " 7%, p 5 0.49

TFAM/b-actin # 11%, p 5 0.42 — # 11%, p 5 0.60 —

TFEB/b-actin # 13%, p 5 0.39 — " 4%, p 5 0.74 —

Five mice treated with 4mM ambroxol and 6 untreated mice were analyzed. Data were analyzed with the unpaired t test.

GCase 5 glucocerebrosidase.
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Ambroxol Treatment Did Not Affect TFAM and
TFEB Protein Levels in Wild-Type Mice
Ambroxol has been reported to upregulate the CLEAR

(coordinated lysosomal expression and regulation) pathway

by increased transcription of TFEB.23 Mitochondria func-

tion is modified by GCase deficiency,12 and so we investi-

gated whether ambroxol had an effect on TFEB and

TFAM levels. TFEB and TFAM protein levels were mea-

sured by Western blotting analysis in the brainstem and

cortex of ambroxol-treated and untreated wild-type mice.

No significant changes in protein levels of TFEB and

TFAM were observed in the brainstem or cortex of wild-

type mice treated with 4mM ambroxol, when compared to

untreated littermates (see Table 2).

Ambroxol Treatment Increased GCase
Activity in L444P/ 1 Mice
To determine whether ambroxol was capable of increas-

ing GCase activity in Gba1 transgenic mice, GCase activ-

ity was measured in the brainstem, midbrain, cortex, and

striatum of L444P/ 1 mice given 0 or 4mM ambroxol

and 1/ 1 littermates given 0mM ambroxol for 12 con-

secutive days. The 1-way ANOVA analysis showed a sta-

tistically significant difference in GCase activity between

groups in the brainstem (F2,13 5 37.92, p< 0.0001),

midbrain (F2,13 5 56.02, p< 0.0001), cortex (F2,15 5 32.70,

p< 0.0001), and striatum (F2,12 5 45.42, p< 0.0001). The

post hoc analysis using the Tukey HSD test showed that base-

line GCase activity was significantly decreased in the brain-

stem (30%), midbrain (28%), cortex (27%), and striatum

(29%) of untreated L444P/ 1 mice, when compared to

untreated 1/ 1 littermates (Fig 2A–D). The Tukey HSD

analysis also determined that GCase activity was significantly

increased in the brainstem (13%), midbrain (15%), cortex

(17%), and striatum (21%) of L444P/ 1 mice treated with

4mM ambroxol, when compared to untreated mice (see Fig

2A–D). HEXB activity in the brainstem, midbrain, cortex,

and striatum was similar between untreated L444P/ 1 and

1/ 1 mice (data not shown). Ambroxol treatment did not

have an effect on HEXB in the brainstem, midbrain, cortex,

and striatum of L444P/ 1 mice (data not shown).

GCase activity was also measured in the total, cyto-

solic, and lysosomal fractions of the brainstem of L444P/

1 mice given 0 or 4mM ambroxol and untreated 1/

1 littermates. The 1-way ANOVA analysis showed a sta-

tistically significant difference in GCase activity between

groups in the total (F2,7 5 34.67, p 5 0.0002), cytosolic

(F2,7 5 24.35, p 5 0.0007), and lysosomal fractions

(F2,7 5 6.445, p 5 0.0259). The post hoc analysis using

the Tukey HSD test determined that GCase activity was

significantly decreased in the total (39%), cytosolic

(58%), and lysosomal (39%) fractions of the brainstem

of untreated L444P/ 1 mice, when compared to untreat-

ed 1/ 1 littermates (see Fig 2E–G). The Tukey HSD

analysis also showed that GCase activity was significantly

increased in the total (29%) and lysosomal (61%)

fractions of the brainstem of L444P/ 1 mice treated with

FIGURE 2: Glucocerebrosidase enzyme (GCase) activity in
L444P/ 1 mouse brains after 12 days of treatment with 4mM
ambroxol. (A–D) Baseline GCase activity was significantly
decreased in the brainstem, midbrain, cortex, and striatum of
untreated L444P/ 1 mice (n 5 5), when compared to untreat-
ed 1/ 1 littermates (n 5 5). After 4mM ambroxol treatment,
GCase activity was significantly increased in the brainstem,
midbrain, cortex, and striatum of L444P/ 1 mice (n 5 7), when
compared to untreated L444P/ 1 littermates (n 5 5). (E–G)
Baseline GCase activity was significantly decreased in the
total, cytosolic, and lysosomal fractions of the brainstem of
untreated L444P/ 1 mice (n 5 4), when compared to non-
treated 1/ 1 littermates (n 5 4). After 4mM ambroxol treat-
ment, GCase activity was significantly increased in the total
and lysosomal, but not the cytosolic fraction of the brainstem
of L444P/ 1 mice (n 5 4), when compared to untreated
L444P/ 1 littermates (n 5 4). Data were analyzed with the
1-way analysis of variance test, followed by the post hoc
analysis using the Tukey Honestly Significant Difference test.
*p < 0.05, **p £ 0.01, ***p £ 0.001.
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5mM ambroxol, when compared to untreated ones (see

Fig 2E–G). Interestingly, ambroxol treatment of L444P/

1 mice led to by far the greatest increase of GCase

activity in the lysosomal fraction (the only place where

GCase is functional), with activity almost identical to

GCase activity of untreated 1/ 1 mice.

GCase Activity Is Reduced in SNCA/SNCA
Mice and Is Restored by Ambroxol
GCase activity was measured in the brainstem, midbrain,

cortex, and striatum of SNCA/SNCA mice given 0 or

4mM ambroxol and wild-type mice given 0mM

ambroxol for 12 consecutive days. Baseline GCase activi-

ty was significantly decreased (as analyzed by the

unpaired t test) in the brainstem (10%), midbrain (9%),

cortex (11%), and striatum (18%) of untreated SNCA/

SNCA mice, when compared to untreated wild-type mice

(Fig 3A–D). GCase activity was significantly increased

(as analyzed by the unpaired t test) in the brainstem

(14%), midbrain (11%), cortex (9%), and striatum

(13%) of SNCA/SNCA mice treated with 4mM

ambroxol, when compared to untreated littermates (see

Fig 3E–H). HEXB activity in the brainstem, midbrain,

cortex, and striatum was unchanged between untreated

SNCA/SNCA and 1/ 1 mice (data not shown). The

increase in GCase activity in SNCA/SNCA mice after

ambroxol treatment had no significant effect on HEXB

activity in the brainstem, midbrain, cortex, and striatum

(data not shown).

Ambroxol Treatment Decreased a-Synuclein
and Phospho-a-Synuclein Protein Levels in
SNCA/SNCA Mice
To check the level of a-synuclein overexpression in

SNCA/SNCA mice, Western blotting analysis was con-

ducted to measure a-synuclein protein levels in the brain-

stem, cortex, and striatum of untreated SNCA/SNCA and

wild-type mice. a-Synuclein protein levels were signifi-

cantly increased in the striatum (47%) of untreated

SNCA/SNCA mice, when compared to untreated wild-

type mice (unpaired t test, p 5 0.0003; Fig 4G, H). a-

Synuclein protein levels in the brainstem and cortex of

untreated SNCA/SNCA mice were increased by 52% and

35%, respectively, when compared to untreated wild-type

mice, but these changes did not reach statistical signifi-

cance (unpaired t test, p 5 0.0764 and p 5 0.0635,

respectively; see Fig 4A, B, D, E). Next, to determine

whether the increase in a-synuclein protein levels was

accompanied by an increase in the phosphorylation of a-

synuclein in SNCA/SNCA mice, Western blotting analysis

was conducted to measure the levels of phosphorylation

of a-synuclein at S129 in the brainstem, cortex, and stri-

atum of untreated SNCA/SNCA and wild-type mice. Sig-

nificant increases in S129 phosphorylation of a-synuclein

were observed in the brainstem (589%), cortex (189%),

and striatum (285%) of untreated SNCA/SNCA mice,

when compared to untreated wild-type mice (unpaired t

test, p 5 0.0004, p 5 0.0026, and p 5 0.0493, respective-

ly; see Fig 4A, C– E, G, I).

To determine whether 4mM ambroxol treatment

had an effect on protein expression of a-synuclein and

on S129 phosphorylation of a-synuclein, protein levels

were measured by Western blotting analysis in the

FIGURE 3: Glucocerebrosidase enzyme (GCase) activity in
SNCA/SNCA mouse brains after 12 days of treatment with
4mM ambroxol. (A–D) Baseline GCase activity was signifi-
cantly decreased in the brainstem, midbrain, cortex, and
striatum of untreated SNCA/SNCA mice (n 5 6), when com-
pared to untreated 1/ 1 mice (n 5 4). (E–H) After 4mM
ambroxol treatment, GCase activity was significantly
increased in the brainstem, midbrain, and cortex, but not in
the striatum of SNCA/SNCA mice (n 5 6), when compared to
untreated SNCA/SNCA littermates (n 5 6). Data were ana-
lyzed with the unpaired t test. *p < 0.05, **p £ 0.01,
***p £ 0.001 versus control.
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brainstem, cortex, and striatum of ambroxol-treated and

untreated SNCA/SNCA mice. a-Synuclein protein levels

were significantly decreased in the brainstem (19%) and

striatum (17%) of ambroxol-treated SNCA/SNCA mice,

when compared to untreated littermates (unpaired t test,

p 5 0.0012 and p 5 0.0236, respectively; Fig 5). a-

Synuclein protein levels in the cortex of ambroxol-treated

SNCA/SNCA mice were decreased by 19%, when com-

pared to untreated littermates, but this change did not

reach statistical significance (unpaired t test, p 5 0.1737).

Significant decrease in S129 phosphorylation of a-

synuclein was observed in the brainstem (41%) of

ambroxol-treated SNCA/SNCA mice, when compared to

untreated littermates (unpaired t test, p 5 0.0490).

Decreases in S129 phosphorylation of a-synuclein were

also observed in the cortex (65%) and striatum (45%) of

ambroxol-treated SNCA/SNCA mice, when compared to

untreated littermates, but these changes did not reach sta-

tistical significance (unpaired t test, p 5 0.0656 and

p 5 0.0681, respectively).

Discussion

This study provides the first comprehensive analysis of

ambroxol treatment on GCase activity in different brain

regions in wild-type, L444P/1, and human a-synuclein

overexpressing mice.

We observed a significant increase of GCase activity in

the brainstem, midbrain, cortex, and striatum following

4mM ambroxol administration in distilled water. This fur-

ther supports both the ability of ambroxol to cross the

brain–blood barrier and its ability to enhance the activity of

wild-type GCase.23 This may reflect ambroxol’s ability to

chaperone wild-type GCase trafficking from endoplasmic

reticulum to lysosome, or through an effect on the CLEAR

pathway.23–25 We did not observe any serious adverse effects

of ambroxol administration in wild-type mice. At higher

concentrations ambroxol resulted in decrease in daily water

intake, which may be related to high osmolality of ambroxol

at high concentrations. The observed decline in water con-

sumption probably explains why 4mM but not 5mM

ambroxol resulted in significant increase in GCase activity, as

FIGURE 4: a-Synuclein (a-syn) and serine 129 (S129)-phos-
phorylated a-synuclein protein levels in SNCA/SNCA mouse
brains. (A) Western blotting for a-synuclein and S129-
phosphorylated a-synuclein protein in the brainstem (exam-
ple blots shown). (B) a-Synuclein protein levels were
increased in the brainstem of SNCA/SNCA mice (n 5 6),
when compared to 1/ 1 mice (n 5 4), but this increase did
not reach statistical significance. (C) S129-phosphorylated a-
synuclein protein levels were significantly increased in the
brainstem of SNCA/SNCA mice (n 5 6), when compared to
1/ 1 mice (n 5 4). (D) Western blotting for a-synuclein and
S129-phosphorylated a-synuclein protein in the cortex
(example blots shown). (E) a-Synuclein protein levels were
increased in the cortex of SNCA/SNCA mice (n 5 6), when
compared to 1/ 1 mice (n 5 4), but this increase did not
reach statistical significance. (F) S129-phosphorylated a-syn-
uclein protein levels were significantly increased in the cor-
tex of SNCA/SNCA mice (n 5 6), when compared to 1/
1 mice (n 5 4). (G) Western blotting for a-synuclein and
S129-phosphorylated a-synuclein protein in the striatum
(example blots shown). (H) a-Synuclein protein levels were
significantly increased in the striatum of SNCA/SNCA mice
(n 5 6), when compared to 1/ 1 mice (n 5 4). (I) S129-
phosphorylated a-synuclein protein levels were significantly
increased in the striatum of SNCA/SNCA mice (n 5 6), when
compared to 1/ 1 mice (n 5 4). Data were analyzed with the
unpaired t test. *p < 0.05, **p £ 0.01, ***p £ 0.001 versus
control.
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mice given 5mM ambroxol probably did not receive as

much ambroxol as the mice treated with 4mM ambroxol.

The only other study that investigated ambroxol effect on

GCase activity in wild-type mice found a significant increase

of activity in the cerebellum, but no increase in the cerebrum

after 1 week of treatment.24 However, several differences

between the study designs, such as dose optimization or

treatment length and solvent used, may explain why we were

able to observe the effect of ambroxol in different brain

regions of our wild-type mice. Moreover, it is likely that lev-

els of GCase activity vary among different brain regions, and

so a collective analysis of the cerebrum as a whole (rather

than the individual regions we considered here) may also

account for the difference in our results.

The increase in GCase activity was not concomitant

with an increase in GCase mRNA levels in ambroxol-

treated mice. This suggests that the increase in GCase activ-

ity is likely to be regulated through other components of

the lysosomal pathway, such as saponin C, which has been

shown to both activate and stabilize GCase.29,30

It has recently been suggested that in fibroblasts

ambroxol might increase GCase activity by activating the

genes of the CLEAR network through the action of TFEB, a

key regulator of lysosomal biogenesis.23 Ambroxol treatment

of control, Gaucher, and Parkinson-GBA1 fibroblasts led to

a significant upregulation of TFEB mRNA. Our data

showed no significant increase in TFEB protein levels in

wild-type mice following ambroxol treatment. This differ-

ence might simply relate to in vitro versus in vivo effects,

dose, bioavailability, or alternatively to tissue or species spe-

cificity. We also evaluated whether ambroxol had an effect

on TFAM, an important regulator of mitochondrial tran-

scription, but did not observe any changes in TFAM protein

levels.

FIGURE 5: a-Synuclein (a-syn) and S129-phosphorylated a-
synuclein protein levels in SNCA/SNCA mouse brains after
12 days of treatment with 4mM ambroxol (Amb). (A) West-
ern blotting for a-synuclein and serine 129 (S129)-phosphor-
ylated a-synuclein protein in the brainstem (example blots
shown). (B) a-Synuclein protein levels were significantly
decreased in the brainstem of ambroxol-treated SNCA/
SNCA mice (n 5 5), when compared to untreated littermates
(n 5 5). (C) S129-phosphorylated a-synuclein protein levels
were significantly decreased in the brainstem of ambroxol-
treated SNCA/SNCA mice (n 5 5), when compared to
untreated littermates (n 5 5). (D) Western blotting for a-
synuclein and S129-phosphorylated a-synuclein protein in
the cortex (example blots shown). (E) a-Synuclein protein
levels were decreased in the cortex of ambroxol-treated
SNCA/SNCA mice (n 5 5), when compared to untreated lit-
termates (n 5 5), but this decrease did not reach statistical
significance. (F) S129-phosphorylated a-synuclein protein
levels were decreased in the cortex of ambroxol-treated
SNCA/SNCA mice (n 5 5), when compared to untreated lit-
termates (n 5 5), but this decrease did not reach statistical
significance. (G) Western blotting for a-synuclein and S129-
phosphorylated a-synuclein protein in the striatum (example
blots shown). (H) a-Synuclein protein levels were significant-
ly decreased in the striatum of ambroxol-treated SNCA/
SNCA mice (n 5 5), when compared to untreated littermates
(n 5 5). (I) S129-phosphorylated a-synuclein protein levels
were decreased in the striatum of ambroxol-treated
SNCA/SNCA mice (n 5 5), when compared to untreated
littermates (n 5 5), but this decrease did not reach statistical
significance. Data were analyzed with the unpaired t test.
*p < 0.05, **p £ 0.01 versus control.

Migdalska-Richards et al: Ambroxol in Transgenic Mice

November 2016 773



The L444P/ 1 mice had a significant reduction in

brain GCase activity levels. A significant increase of

GCase activity was observed in the brainstem, midbrain,

cortex, and striatum of L444P/ 1 mice following 4mM

ambroxol administration in distilled water. The measure-

ment of GCase activity in different fractions of the brain-

stem of L444P/ 1 mice treated with ambroxol showed

that by far the greatest increase in GCase activity

occurred in lysosomes, restoring levels comparable to

GCase activity of untreated 1/ 1 mice. To our knowl-

edge, the only other ambroxol study conducted on trans-

genic mice with GBA1 mutations used mice carrying a

human transgene containing either the N370S or L444P

mutation. These mice showed no significant increase of

GCase activity in the cerebrum after a subcutaneous

injection of ambroxol (100mg/kg for 14 days).25 This

failure to increase GCase activity may reflect dose or lim-

ited availability of the drug within this route in contrast

to our optimized protocol for ambroxol administration.

Finally, we investigated transgenic mice overexpress-

ing human a-synuclein in the absence of endogenous

mouse a-synuclein. First, we addressed the question of

the potential reciprocal relationship between a-synuclein

levels and GCase activity by analyzing the baseline

GCase activity in our SNCA/SNCA mice compared to

that in wild-type mice. Significant reductions in GCase

activity were observed in the brainstem, midbrain, cortex,

and striatum of SNCA/SNCA mice. This finding further

supports existing data, which demonstrate that increased

a-synuclein is associated with decrease in GCase activity

in PD brains and in the SH-SY5Y cell lines overexpress-

ing SNCA.15 Analysis of a-synuclein protein levels in dif-

ferent brain regions of SNCA/SNCA mice demonstrated

approximately 50% increase in a-synuclein levels com-

pared to wild-type mice in the brainstem, cortex, and

striatum. The observed increase was comparable to that

previously reported, where a 1- to 1.5-fold increase in a-

synuclein protein expression was observed, when com-

pared to wild-type endogenous mouse a-synuclein lev-

els.31 We also observed a significant increase in S129

phosphorylation of a-synuclein in the brainstem, cortex,

and striatum of our SNCA/SNCA mice compared to that

in wild-type mice. There is increasing evidence that

phosphorylation of a-synuclein may play a pivotal role in

a-synuclein aggregation and formation of Lewy bodies

and neurites. Numerous studies reported excessive accu-

mulation of a-synuclein phosphorylated at residue S129

in the brain of PD patients, where phosphorylated a-

synuclein accounts for up to 90% of total a-synuclein

found within Lewy bodies.6,32 Also, phosphorylation of

a-synuclein at residue S129 seems to be aberrantly accumu-

lated in the brain of animal models of synucleinopathies.32

We observed a significant increase of GCase activity

in the brainstem, midbrain, and cortex following 4mM

ambroxol administration in SNCA/SNCA mice and

approximately 20% reduction of a-synuclein protein levels

in these regions. This further confirms the existence of a

reciprocal relationship between a-synuclein and GCase lev-

els, because the increase in GCase activity in our ambroxol-

treated SNCA/SNCA mice led to decrease in a-synuclein

protein levels. Finally, we investigated whether ambroxol

was capable of lowering the levels of a-synuclein phosphor-

ylated at residue S129 and observed more than a 40%

reduction in ambroxol-treated SNCA/SNCA mice. This

finding is particularly exciting in light of the growing

recognition of the importance that phosphorylation of

a-synuclein plays in the pathogenesis of synucleinopa-

thies.32 To our knowledge, this is the only study conducted

to date that investigates the effect of ambroxol treatment

on GCase activity and a-synuclein in transgenic mice over-

expressing human a-synuclein in the absence of mouse a-

synuclein. Altogether, the ability of ambroxol to decrease

both a-synuclein and S129-phosphorylated a-synuclein

protein levels is very promising for its future application as

a potential drug for treatment of PD and other synucleino-

pathies, including dementia with Lewy bodies.

No significant changes in HEXB activity were

observed in the brainstem, midbrain, cortex, or striatum

of wild-type, L444P/1, and SNCA/SNCA mice following

4mM ambroxol treatment, suggesting that ambroxol has

no effect on lysosomal content. This observation is in

contrast to the data obtained from human PD-GBA1

fibroblasts, which showed a significant decrease in HEXB

activity after ambroxol treatment.23 This clearly indicates

that further work is required to determine the influence

of ambroxol on HEXB.

Collectively, our data show that oral ambroxol is able

to increase brain GCase activity in vivo in both wild-type

and transgenic mice. Its chaperone activity appears to be

important for targeting GCase for transport to the lyso-

some. Ambroxol’s ability to penetrate the brain–blood bar-

rier, elevate GCase, and reduce a-synuclein and S129-

phosphorylated a-synuclein protein levels suggests its

potential for development as a treatment for patients with

PD and other synucleinopathies.33–35
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